7

1

铕空心阴极放电中的光电流谱

景春阳 张桂燕 龙龚明 林福成 (中国科学院上海光学精密机械研究所)

提要

利用连续可调谐染料激光器,在 5700~6100Å 波长范围内测得 65条铕光电流谱,其中 61条为原子 跃迁,4条为一价离子跃迁。

一、引 言

用激光辐照含有溅射原子和低压气体空心阴极放电时,在激光波长与放电中存在成分 的跃迁波长一致时,气体放电的阻抗可以发生明显的变化¹¹³。这种称之为光电流效应的现 象在光谱学、基本度量学、分析化学以及放电物理学等方面都有切实和良好的应用^[1~3]。

文献[4] 中报告了利用脉冲可调谐染料激光器测量的钕光电流谱,本文则报告利用连续 可调谐染料激光器测量的铕光电流谱。有关铕的光电流谱过去报道的甚少^[5],本文是首次 报道大量的铕光电流谱。

二、实验装置

实验装置方框图如图1所示。Ar⁺ 离子激光器泵浦的连续波环形染料激光器光束作为 激发光束,波长连续调谐范围为 5700~6200Å,线宽为几个 GHz。光束被斩波器斩成 130 日₂ 后由焦距 f = 500 mm 的透镜聚入放电阴极孔中。

Fig. 1 Block diagram for measuring the optogalvanic spectroscopy of Eu

收稿日期: 1985年10月22日; 收到修改稿日期: 1985年12月8日

Eu-Ne 空心阴极灯系北京有色金属研究总院制造的,内充几 Torr 氖气以维持放电。该 灯由高压直流稳定电源供电,放电回路中串以 R=16kΩ 的镇流电阻,以稳定放电电流。 检 测电压变化的耦合电容 O=0.22 μF。用示波器直接观测较强的信号,对于弱信号或为了获 得连续的光电流谱则需用锁相放大器和记录仪测定。

三、实验结果

实验对 Eu-Ne 空心阴极灯在 5700~6100 Å 波长范围内的光电流谱进行了连续 扫 描, 获得了 Eu 和 Ne 的光电流谱。

在测量过程中发现有些信号非常强,例如在一定条件下,氖 5882 Å 跃迁的光电流信号

幅度高达 4V, 氖的这一跃迁起始于在基态之上 16.6 eV 的 亚稳态, 其信号为反常的(共振时阻抗增加)。 图 2 示出了 该信号的示波图。

Eu 的光电流信号普遍比 Ne 的弱,但有很高的信噪 比,以致仍能获得 Eu 大量光电流谱线。把这一光电流谱 与同一只 Eu-Ne 灯的发射光谱进行比较,以 Ne 的信号谱 线为标准,利用光谱线波长表对光电流谱进行辨认,确定 Eu 谱线。然后用计算机确定误差范围内的可能跃迁。最后 获得 Eu 光电流谱线 65 条,其中原子谱线 61 条,一价离子 谱线 4 条。在这 4 条一价铕离子谱中 Eu II 6049.5 Å 已有

Fig. 2 Optogalvanic signal of 588.2 nm line of Ne (Laser output power 50 mW, discharge current 8 mA; upper trace-laser turned off, dower trace-laser turned on)

报道¹⁵³,其余3条均为首次观测到的。大量 EuI 和 EuII 的谱线波长,相对强度,以及相应 跃迁能级均列入表1中。在 EuI 谱线中,除大量发自偶宇称能级的跃迁外,还观测到8条 发自奇宇称能级的跃迁,最高的起始能级为19794 cm⁻¹。所有 EuI 谱线都为正常光电流信 号(共振时阻抗减小); EuII 的4条谱线中2条为正常信号,另2条为反常信号;此外,还得 到一些杂质谱线——钬(Ho)的原子谱线4条,它们也列在表1后部。其中也有一条为反常 信号。其原因有待作进一步研究。

我们所进行的 Eu-Ne 光电流谱测量条件为: Eu-Ne 灯工作电流 I = 8 mA, 染料激光器 输出功率 P = 50 mW。

图 3 给出 Eu-Ne 空心阴极灯部分光电流光谱和对应的发射光谱。与 Eu-Ne 灯的发射 光谱*比较, Eu-Ne 灯的光电流谱有下面的优点:

(1) 高的分辨率

由激光的线宽和多普勒宽度决定在大范围快速扫描中,分辨率小于0.4Å;在慢速扫描中,分辨率为几个 GHz,在发射谱中不能分辨的谱线被清晰地分开了。

(2) 高的灵敏度和信噪比

原来在发射谱中较难辨认的弱谱线显著增强了,此外,还发现了若干发射谱中没有的较弱谱线(在测量范围内,测得的 65 条光电流谱,在发射谱中仅有 85 条测得)。这主要是在分辨率的线宽内(单色仪为 Å 的量级,光电流谱为 GHz 量级),光电流谱的噪声能量要小得多

* 以 0.6m 法国 HRS-2 型光栅单色仪测定。

5期

光

1

te in	wavelength(Å)	relative intensity	lower level (cm ⁻¹)	upper level (cm ⁻¹)
EuI	5739,0	150	19447.2	36867.0
		2 4 4 5 M 6 M	13222.0	30642.6
	5765.2	170	0.0	17340.7
	5783.7	50	14563.6	31848.84
	5792.7	41	19531.3	36889.6
	5800.3	66	13778.7	31014.5
r.			19364.5	36600.8
		1	19462.1	36700 +
		1	19631.3	26867 0
	ł		19763.8	37001 7
	5805.7	17	19364.5	36584 3
	5820.0		19712.2	56889 6
	5829.5	15	17248.8	3239 8 3
	5831.0	170	13778.7	20922 7
	5838.0	7	19432.1	58583 4
			17340 7	34466 %*
	5843.5	14	19273.2	36381 5
	5845.7	54	19447 2	36545 8
	585d.9	12	19631-3	36700 4
	5861.0	95	19447 3	20100.±
		10	19092 7	00003.0
	5864.8	18	9:34 5	Sec. 1.0
	5566-6	10	13773.7	SORT / S
	00000	±3	15043-9	30001 9
			13778 7	30814-1
			19462 1	50510.1 505 1 7
			10513.7	265-1-5
			19543 7	2000 E.U 9255 1 J
	5854-8	5	-07:9.9	SATE A
	5585.3	5	10500 0	96583 J
	7561 3	6	19327 3	266(1) 8
	5295.3	15	9513 7	56511.7
	7902.8	10	100-33 x	
	+ NeI5902.5	>11-	101.00.0	C. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
	5914.7	£	1959a. 2	36501.7
	5915.8	: 47	1578J.6	22481.0*
			19543.7	56441.3
	<u>5</u> 914.9	6	19681.3	50504.0
	5925.S	1 6	19712.2	36554.3
			19462.1	36334 .5
	5923.5	14	16070.8	82048 .4
			19543.7	87411.)
	5957. 8	9	19712.2	0745.3
			19273.2	86107 .9
			19763.8	8650C.3
	5 94 2.7	77	19763.8	36550.4
		1	1	

Table 1 Opægalvanic spectrum of Eu in the wavelength range $570 \sim 610 \text{ nm}$

报

5 期

.

-

				(continued)
atom	wavelength(Å)	relative intensity	lower level (cm ⁻¹)	upper level(cm ⁻¹)
Eal			19462 .1	36284 .8
	5953.5	15	19794.2	36586.4
		U U	19712.2	3650 4.6
	5953.8	20	13048.9	29838.6
	м., х х		19543.7	36334.5
	5954.3	8	19794.2	36584.3
	5963.8	40	15421.3	32184.7
	5967.2	116	13457.2	30211.1
			15248.8	32003.2
	5968.4	26	19631.3	36381.5
e.	5970.9	8	19364.5	36107.9
	5971. 7	5	19543.7	36284.8
			17340.7	34081.2
	5972.8	69	15680. 3	32418.4
			15137.7	31876.1
*		•	19763.8	36501.7
	5980.5	17	19364.5	36081.0
			15680.3	32398.3Þ
	· • • • • • • • •	9 p.	17707.4	34422.9*
	5983.3	21	15421.3	32130.3
	5983 .9	11 ·	19364.5	36071.7
	in in 1922 + 30		19794.2	36501.7
	5992.9	51	16079.8	32761.7
	6003.1	15	14563.6	31217.3*
	6004.4	19	15137.7	31787.7
	6005.7	16	15680.3	32326.7
	5 5 1		19462.1	36107.9
		×	19763.8	36411.0
		· 2	19794.2	36441.8
	6012.2	45	15581.6	32209.9ª
	6012.6	32	15248.8	31876.1
	6015.6	36	19462.1	36081.0
	6016.0	28	19763.8	36381.5
			13222.0	29838.6
			19794.2	36411.0Þ
	6018.2	134	0.0	16 611.8
	6023.2	45	15137.7	31735.8
	1.00	, ²⁷	17707.4	34306.4
	6029.0	69	15421.3	32003.2
	6032.4	16	19712.2	36284.8
	6044.7	30	15248.8	31787.7
	$\sum_{i=1}^{2^{d}} e^{-i i \cdot i}$		19794.2	36334.5
	6052.9	19	16079.8	32596.3
			16079.8	32598.0 b
* ²	6057.4	4 3	15680.8	32184. 7
. Ka	6075.6	29	15421.3	31876. 1
		, ·		

÷

6 巻

				(continued)
atom	wavelength $(Å)$	relative intensity	lower level (cm ⁻¹)	upper level (cm ⁻¹)
EuI	6077.4	16	15680.3	32130.3
			19631.3	36081.0
	6083.9	54	13778.7	30211.1
	6099. 4	112	13222.0	29612.7
	6107.5	8	19712.2	36081.0
	6108.1	52	19364.5	35731.6
EuII	5818.7	-2.4	9923.0	27104.1
	5873.0	>152	16081.7	27104.1
	+NeI 5872.8			
	5966.1	22	10081.7	26838.5
	6049.5	- 8	10312.8	26838.5
HoI	5948.0	-44	5419.7	20227.3
	5950.0	5	11530.6	28315.8
	5973.5	5	0.0	16736.0
	5982.9	32	0.0	16709 8

学

报

注: 1. 表中有 a 者为发自奇字称能级到偶字称能级的跃迁;其余为偶字称能级到奇字称能级的跃迁;

2.表中每一波长下相应跃迁能级中,第一行和标有 b 的行为波长表中列入的,其余各行为波长表未列入本工作测得的可能跃迁;

8. 表中谱线相对强度数值前标有"一"者为反常光电流信号,其余为正常光电流信号。

光

学

}

٤

1

(3) 辨认标定方便

光电流谱中,激光引起阻抗变化有正负极性之分,表现在光电流谱上谱线的方向不同, 这反映了产生谱线能级的内在特性。这种现象对谱线的辨认标定和研究能级特性无疑是独 有的方便之处。

本测量表明,光电流谱测量具有高分辨率,高灵敏度和高的信噪比,而且方法也具有简 单性,因而有广泛可用性。其原因是:(1)空心阴极灯结构简单,可放电提供相当密度的金属 原子和离子(包括难熔金属),并且在放电余辉中有高的有效电子温度;(2)激光器的窄线宽 和波长连续可调谐的高强度光子流;(3)电信号的测量代替光信号的测量,可获得很高的信 噪比。

参考文献

[1] R. B. Green, R. A. Keller; Appl. Phys. Lett., 1976, 29, No. 11 (Nov), 727.

- [2] D. S. King et al.; Appl. Opt., 1977, 16, No. 10 (Oct), 2617.
- [3] R. A. Keller et al.; J. O. S. A., 1979, 69, No. 5 (May), 738.

[4] 殷立峰等; 《中国激光》, 1984, 11, No. 4 (Apr), 219。

[5] Petter K. Schenck et al.; J. O. S. A., 1978, 68, No. 5 (May), 626.

Optogalvanic spectroscopy in an Eu hollow cathode discharge

JING CHUNYANG, ZHANG GUIYAN, SHI GONGMING AND LIN FUCHENG (Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

(Received 22 October 1985; revised 8 December 1985)

Abstract

A CW tunable dye laser was used to measure the optogalvanic spectroscopy of Eu. Sixth five spectral lines were observed, among them 61 are from EuI, and 4 are from EuII.